import IMP, IMP.test import IMP.core import IMP.gsl class WoodsFunc(IMP.Restraint): """Woods function for four input values, defined as an IMP restraint""" def __init__(self, model, particles): IMP.Restraint.__init__(self) self.particles= particles self.index= IMP.FloatKey("x") def do_show(self, junk): print "Woods function" def get_version_info(self): return IMP.VersionInfo("Daniel Russel", "0.5") def unprotected_evaluate(self, accum): (x1, x2, x3, x4) = [p.get_value(self.index) for p in self.particles] a = x2 - x1 * x1 b = x4 - x3 * x3 e = 100.0 * a * a + (1.0 - x1) ** 2+ 90.0 * b * b + (1.0 - x3) ** 2 \ + 10.1 * ((x2 - 1.0) ** 2 + (x4 - 1.0) ** 2) \ + 19.8 * (x2 - 1.0) * (x4 - 1.0) if accum: dx = [-2.0 * (200.0 * x1 * a + 1.0 - x1), 2.0 * (100.0 * a + 10.1 * (x2 - 1.0) + 9.9 * (x4 - 1.0)), -2.0 * (180.0 * x3 * b + 1.0 - x3), 2.0 * (90.0 * b + 10.1 * (x4 - 1.0) + 9.9 * (x2 - 1.0))] for (p,d) in zip(self.particles, dx): p.add_to_derivative(self.index, d, accum); #for (i, d) in zip(self.indices, dx): # accum.add_to_deriv(i, d) return e def get_input_particles(self): return IMP.ParticlesTemp(self.particles) def get_input_containers(self): return IMP.ContainersTemp() class CGOptimizerTests(IMP.test.TestCase): def test_cg_woods_func(self): """Check that we can optimize the Woods function with CG""" self._test_starting_conditions((-3.0, -1.0, -3.0, -1.0)) self._test_starting_conditions((2.0, 3.0, 8.0, -5.0)) def _test_starting_conditions(self, starting_values): """Test the optimizer with given starting conditions""" model = IMP.Model() particles = [] for value in starting_values: p = IMP.Particle(model) particles.append(p) p.add_attribute(IMP.FloatKey("x"), value, True) rsr = WoodsFunc(model, particles) model.add_restraint(rsr) opt = IMP.gsl.ConjugateGradients() opt.set_model(model) #opt.set_threshold(1e-5) e = opt.optimize(500) for p in particles: val = p.get_value(IMP.FloatKey("x")) self.assertAlmostEqual(val, 1.0, places=1) self.assertAlmostEqual(e, 0.0, places=2) if __name__ == '__main__': IMP.test.main()