import IMP import IMP.em import IMP.test class Tests(IMP.test.TestCase): def setUp(self): IMP.test.TestCase.setUp(self) IMP.base.set_log_level(IMP.base.SILENT) # Initial values and names of files self.fn_in = self.get_input_file_name('1tdx_sampled.mrc') self.resolution=6.0 self.fn_coords = self.get_input_file_name('1tdx.pdb') self.pixel_size=1.0 self.mrc_rw = IMP.em.MRCReaderWriter() self.EM_map = IMP.em.read_map(self.fn_in,self.mrc_rw) self.EM_map.std_normalize() self.EM_map.get_header_writable().compute_xyz_top() self.mdl=IMP.Model() mh=IMP.atom.read_pdb(self.fn_coords,self.mdl,IMP.atom.CAlphaPDBSelector()) IMP.atom.add_radii(mh) self.atoms=IMP.core.get_leaves(mh) self.model_map = IMP.em.SampledDensityMap(self.atoms, self.resolution, self.pixel_size) self.xo=self.model_map.get_header().get_xorigin() self.yo=self.model_map.get_header().get_yorigin() self.zo=self.model_map.get_header().get_zorigin() self.EM_map = IMP.em.SampledDensityMap(self.atoms, self.resolution, self.pixel_size) self.EM_map.std_normalize() self.EM_map.get_header_writable().compute_xyz_top() self.ccc = IMP.em.CoarseCC() self.ccc_intervals = IMP.em.CoarseCCatIntervals() def calc_simple_correlation(self): self.model_map.calcRMS(); threshold=self.model_map.get_header().dmin-0.1 return self.ccc.cross_correlation_coefficient(self.EM_map,self.model_map,threshold,False) def test_simple_correlation(self): """ test that the simple fast ccc function works """ score = self.calc_simple_correlation() self.assertAlmostEqual(1.000,score,2) def test_correlation_with_padding(self): """ test that padding option does not affect the CC score""" self.model_map.calcRMS() threshold=self.model_map.get_header().dmin-0.001 score1 = self.ccc.cross_correlation_coefficient(self.EM_map,self.model_map,threshold,False) score2 = self.ccc.cross_correlation_coefficient(self.EM_map,self.model_map,threshold,True) self.assertAlmostEqual(score1,score2,2) def test_origin_translation(self): """ test that translating either the map or the particles does not change the cc score""" # test_correlation_function # compute correlation translating the origin of the model map xm=3;ym=1;zm=-2 translation=IMP.algebra.Transformation3D(IMP.algebra.get_identity_rotation_3d(), IMP.algebra.Vector3D(xm,ym,zm)) self.model_map.set_origin(self.xo-xm,self.yo-ym,self.zo-zm) self.model_map.calcRMS(); threshold=self.model_map.get_header().dmin self.EM_map.get_header_writable().compute_xyz_top() score1 = self.ccc.cross_correlation_coefficient(self.EM_map,self.model_map,threshold,False) #compute correlation translating the particles self.model_map.set_origin(self.xo,self.yo,self.zo) for atom in self.atoms: IMP.core.XYZ(atom.get_particle()).set_coordinates(translation.get_transformed(IMP.core.XYZ(atom.get_particle()).get_coordinates())) interval=1 score= self.ccc.calc_score(self.EM_map,self.model_map,1.0) score2 = 1.-score self.assertAlmostEqual(score1,score2, delta=.05*(score1+score2)) # Here we change the origin of the model map ( but not the particles position). We then resample the particles, # we made sure that all information is inside the translated map. Here we test that the correlation value does not change. def test_corr_consistency(self): """ test that two maps that sample the same particles have cc score of 1 """ simple_score = self.calc_simple_correlation() xm=4;ym=-2;zm=0 self.model_map.set_origin(self.xo-xm,self.yo-ym,self.zo-zm) interval=1 score= self.ccc.calc_score(self.EM_map,self.model_map,1.0) score=1.-score self.assertAlmostEqual(simple_score,score,2) # Check that the function works at intervals def test_corr_at_intervals(self): """ test that the correlation at intervals functionality works""" self.model_map.set_origin(self.xo,self.yo,self.zo) interval=5; times=10; scores_intervals=[] scores_wo_intervals=[] dv = IMP.algebra.Vector3Ds() for i in range(len(self.atoms)): dv.append(IMP.algebra.Vector3D()) translation=IMP.algebra.Transformation3D( IMP.algebra.get_identity_rotation_3d(), IMP.algebra.Vector3D(0.1,0.1,0.1)) #calculate correlation for i in xrange(0,times): scores_wo_intervals.append(self.ccc.calc_score(self.EM_map,self.model_map,1.0)) scores_intervals.append(self.ccc_intervals.evaluate(self.EM_map,self.model_map,dv,1.0,False,interval)) #transform the atoms for xyz in IMP.core.XYZs(self.atoms): xyz.set_coordinates(translation.get_transformed(xyz.get_coordinates())) # check that the scores are equal when they have to be due to the function skipping computations for i in xrange(0,times): if(i%interval==0): result=scores_intervals[i][0] self.assertAlmostEqual(scores_wo_intervals[i], scores_intervals[i][0], delta=1e-8) self.assertAlmostEqual(result, scores_intervals[i][0], delta=1e-8) if __name__=='__main__': IMP.test.main()