# Models for 3sfd using a sampling grid in domino class MonteCarloParams: # <============== This has changed to make the running time short def __init__(self): self.temperatures = [30000,15000,10000,5000,1000] self.iterations = [2,2,2,2] self.cycles = 2 self.max_translations = [20,15,10,5] self.max_rotations = [1,0.5,0.25,0.1] # Probability of using a random move within a RelativePositionMover self.non_relative_move_prob = 0.4 class DominoSamplingPositions: def __init__(self): self.read = "monte_carlo_solutions.db" self.max_number = 5 # max number of solutions to combine self.orderby = "em2d" # criteria to order the solutions class DominoParams: def __init__(self, ): self.heap_solutions = 200 class TestParameters(object): def __init__(self, ): self.do_test = False self.test_fn_assembly = "" class Benchmark: def __init__(self, ): self.fn_pdb_native = "3sfd.pdb" # parameters for measuring the ccc with the 3D map self.resolution = 8 self.voxel_size = 1.5 self.native_map_threshold = 0.25 # The component from the model is aligned to the native component before # computing the measures for the benchmark self.native_component = "3sfdB" self.model_component = "3sfdB" class Experiment (object): def __init__(self,): # representaion self.model_name = ["3sfd"] self.names = ["3sfdA","3sfdB","3sfdC","3sfdD"] self.fn_pdbs = ["3sfdA.pdb","3sfdB.pdb","3sfdC.pdb","3sfdD.pdb"] self.n_residues = 10 self.anchor = [False,True,False,False] self.fixed =[ False,False,False,False] # Pair score restraint: # component1,component2,name,distance,weight,pairs,stddev self.pair_score_restraints =[ ["3sfdB","3sfdA","B_A",0,1,1,3.], ["3sfdB","3sfdC","B_C",0,1,1,3.], ["3sfdB","3sfdD","B_D",0,1,1,3.], ["3sfdD","3sfdC","D_C",0,1,1,3.] ] # Excluded volume restraint: distance, weight,pairs,stddev self.pairs_excluded_restraint = [0,1,0.1,2] # Em2DRestraint: name,images selection file, pixel_size, # resolution, n_projections, weight, max_score self.em2d_restraints = [ ["em2d", "em_images/images.sel", 1.5,5,20,1000,1000 ] ] # Cross-linking restraints component1,residue1, component2, residue2, distance,weight, stddev self.xlink_restraints = [ ["3sfdB","B",23,"3sfdA","A",456,30,100,2], ["3sfdB","B",241,"3sfdC","C",112,30,100,2], ["3sfdB","B",205,"3sfdD","D",37,30,100,2], ["3sfdB","B",177,"3sfdD","D",99,30,100,2], ["3sfdC","C",95,"3sfdD","D",132,30,100,2], ["3sfdC","C",9,"3sfdD","D",37,30,100,2], ["3sfdC","C",78,"3sfdD","D",128,30,100,2], ] # self.have_hexdock = False self.dock_transforms = [ ["3sfdB","3sfdA","relative_positions_3sfdB-3sfdA.txt"], ["3sfdB","3sfdC","relative_positions_3sfdB-3sfdC.txt"], ["3sfdB","3sfdD","relative_positions_3sfdB-3sfdD.txt"], ["3sfdD","3sfdC","relative_positions_3sfdD-3sfdC.txt"], ] self.sampling_positions = DominoSamplingPositions() self.monte_carlo = MonteCarloParams() self.domino_params = DominoParams() self.test_opts = TestParameters() # benchmark # self.benchmark = Benchmark() # results self.n_solutions = 2000 self.orderby = "em2d"