## \example kernel/basic_optimization.py ## This illustrates a basic main loop for optimization and searching for the best ## scoring conformation. ## import IMP.example import IMP.statistics (m,c)=IMP.example.create_model_and_particles() ps= IMP.core.DistancePairScore(IMP.core.HarmonicLowerBound(1,1)) r= IMP.container.PairsRestraint(ps, IMP.container.ClosePairContainer(c, 2.0)) m.add_restraint(r) # we don't want to see lots of log messages about restraint evaluation m.set_log_level(IMP.WARNING) # the container (c) stores a list of particles, which are alse XYZR particles # we can construct a list of all the decorated particles xyzrs= c.get_particles() s= IMP.core.MCCGSampler(m) s.set_number_of_attempts(10) # but we do want something to watch s.set_log_level(IMP.base.TERSE) s.set_number_of_monte_carlo_steps(10) # find some configurations which move the particles far apart configs= s.get_sample(); for i in range(0, configs.get_number_of_configurations()): configs.load_configuration(i) # print out the sphere containing the point set # - Why? - Why not? sphere= IMP.core.get_enclosing_sphere(xyzrs) print sphere # cluster the solutions based on their coordinates e= IMP.statistics.ConfigurationSetXYZEmbedding(configs, c) # of course, this doesn't return anything of interest since the points are # randomly distributed, but, again, why not? clustering = IMP.statistics.create_lloyds_kmeans(e, 3, 1000) for i in range(0,clustering.get_number_of_clusters()): # load the configuration for a central point configs.load_configuration(clustering.get_cluster_representative(i)) sphere= IMP.core.get_enclosing_sphere(xyzrs) print sphere